Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT Seasonal changes in sleep/wake cycles and behaviors related to reproduction often co‐occur with seasonal fluctuations in sex hormones. Experimental studies have established that fluctuations in circulating testosterone mediate circadian rhythms. However, most studies are performed under constant lighting conditions and fail to investigate the effects of testosterone on the phenotypic output of circadian rhythms, that is, chronotype (daily activity patterns under light:dark cycles). Here, we experimentally elevated testosterone with implants during short nonbreeding daylengths in male house sparrows (Passer domesticus) to test if observed seasonal changes in chronotype are directly in response to photoperiod or to testosterone. We fitted individuals with accelerometers to track activity across treatment periods. Birds experienced three treatments periods: short day photoperiods before manipulation (SD), followed by testosterone implants while still on short days (SD + T). Implants were then removed. After a decrease in cloacal protuberance size, an indicator of low testosterone levels, birds were then photostimulated on long days (LD). Blood samples were collected at night, when testosterone peaks, to compare testosterone levels to daily onset/offset activity for experimental periods. Our results indicate that experimentally elevated testosterone under short nonbreeding photoperiods significantly advanced daily onset of activity and total daily activity relative to daylength. This suggests that testosterone, independent of photoperiod, is responsible for seasonal shifts in chronotypes and daily activity rhythms. These findings suggest that sex steroid hormone actions regulate timing of daily behaviors, likely coordinating expression of reproductive behaviors to appropriate times of the day.more » « less
-
Biological clocks are evolved time-keeping systems by which organisms rhythmically coordinate physiology within the body, and align it with rhythms in their environment. Clocks are highly sensitive to light and are at the interface of several major endocrine pathways. Worryingly, exposure to artificial-light-at-night (ALAN) is rapidly increasing in ever more extensive parts of the world, with likely impact on wild organisms mediated by endocrine–circadian pathways. In this overview, we first give a broad-brush introduction to biological rhythms. Then, we outline interactions between the avian clock, endocrine pathways, and environmental and internal modifiers. The main focus of this review is on the circadian hormone, melatonin. We summarize information from avian field and laboratory studies on melatonin and its relationships with behaviour and physiology, including often neglected developmental aspects. When exposed to ALAN, birds are highly vulnerable to disruption of behavioural rhythms and of physiological systems under rhythmic control. Several studies suggest that melatonin is likely a key mediator for a broad range of effects. We encourage further observational and experimental studies of ALAN impact on melatonin, across the full functional range of this versatile signalling molecule, as well as on other candidate compounds at the endocrine–circadian interface. This article is part of the theme issue ‘Endocrine responses to environmental variation: conceptual approaches and recent developments’.more » « less
-
Abstract Although we have long understood that environmental variation affects both physiology and behavior, historically, most studies have limited or simplified environmental variation to focus more directly on traits of interest. Recently, a number of investigators have turned their focus toward attempting to incorporate such variation into studies of physiology and behavior, and not surprisingly, are finding that the results from studies that include more realistic variation, both from the environment as well as in physiological processes within individuals, can differ substantially from those of studies that attempt to hold the parameters constant. Understanding the role that this dynamic variation plays in shaping phenotypes is critical given that, under most predictions from future climate change models, increased variability in factors such as temperature and rainfall are predicted.more » « less
-
Abstract Annual reproductive success is often highest in individuals that initiate breeding early, yet relatively few individuals start breeding during this apparently optimal time. This suggests that individuals, particularly females who ultimately dictate when offspring are born, incur costs by initiating reproduction early in the season. We hypothesized that increases in the ageing rate of somatic cells may be one such cost. Telomeres, the repetitive DNA sequences on the ends of chromosomes, may be good proxies of biological wear and tear as they shorten with age and in response to stress. Using historical data from a long‐term study population of dark‐eyed juncos (Junco hyemalis), we found that telomere loss between years was greater in earlier breeding females, regardless of chronological age. There was no relationship between telomere loss and the annual number of eggs laid or chicks that reached independence. However, telomere loss was greater when temperatures were cooler, and cooler temperatures generally occur early in the season. This suggests that environmental conditions could be the primary cause of accelerated telomere loss in early breeders.more » « less
-
Abstract Research in captive birds and mammals has demonstrated that circadian (i.e., daily) behavioral rhythms are altered in response to increases in sex-steroid hormones. Recently, we and others have demonstrated a high degree of individual repeatability in peak (gonadotropin-releasing hormone [GnRH]-induced sex) steroid levels, and we have found that these GnRH-induced levels are highly correlated with their daily (night-time) endogenous peak. Whether or not individual variation in organization and activity of the reproductive endocrine axis is related to daily timing in wild animals is not well known. To begin to explore these possible links, we tested the hypothesis that maximal levels of the sex steroid hormone estradiol (E2) and onset of daily activity are related in a female songbird, the dark-eyed junco (Junco hyemalis). We found that females with higher levels of GnRH-induced E2 departed from their nest in the morning significantly earlier than females with lower stimulated levels. We did not observe a relationship between testosterone and this measure of onset of activity. Our findings suggest an interaction between an individual’s reproductive endocrine axis and the circadian system and variation observed in an individuals’ daily activity onset. We suggest future studies examine the relationship between maximal sex-steroid hormones and timing of daily activity onset.more » « less
An official website of the United States government
